Fissile Loading in SR HLW Glass

HLW Corporate Board

March 5, 2009

Presentation By:

Jean Ridley, P.E. Sludge Processing Team Lead **Assistant Manager for Waste Disposition Project**

Allen Gunter Pu Disposition Manager Assistant Manager for Nuclear **Materials Stabilization Project**

> UNCLASSIFIED DOES NOT CONTAIN UNCLASSIFIED CONTROLLED NUCLEAR INFORMATION

Department of Energy

Savannah River Operations Office

Woodasth Mar.

The Issue

- The existing Yucca Mountain pre-closure analysis limits total fissile concentration in SRS glass at 897 g/m³
 - The LA includes only discussion of the 13 MT of Pu to be dispositioned through "can-in-can" (a.k.a. lanthanide glass) – No analysis performed
- The Challenge maintain canister production to be within limits:
 - the existing Pu inventory (in the waste) limits the disposition of plutonium through H-Canyon
 - must control the limits via waste characterization and limiting waste loading

Nuclear Materials Position

- 3/08 Preferred Alternative 13MT: 5 MT through DWPF, 7.8 MT-MOX, 0.2 MT -WIPP
 - HLW Impacts:
 - Pu Vit or Can in Can- no change to current System Plan studies required in DWPF
 - Through Sludge LA amendment required glass studies, criticality studies
 - WIPP & MOX, no impact to HLW system
- 6/08 Under Sec approves Alternative CD-1A disposition 5 MT through DWPF
- 10/08 EM notified of fissile limit in LA SAR for SRS HLW
- 11/08 HQ directs SRS to maintain 897 g/m³ fissile limit in LA resulted in stopping 5MT of Pu to DWPF
- 1/09 Pu Disposition Optimization Alternatives Analysis
 - Expected in 4-6 months
 - Various alternatives including WIPP
 - Pu Vit
 - Ceramic Glass (can-in-can)
 - Direct disposal through sludge
 - Other Alternatives WIPP, MOX

How We Got Here

Fissile Concentration for Completed and Current Sludge Batches

Sludge Batch	Fissile Concentration (g/m³)		
1A	256		
1B	219		
2	458		
3	795		
4	674		
5	<897*		

^{*}Maintain <897 g/m³ by controlling canister waste loading

Projected Fissile Loading for Sludge Batch 5 Glass

Waste Loading (Wt%)	Fissile Concentration in Glass (g/m³)	Basis for Loading		
33.5	807	90% of Limit		
34.0	820	Planned Loading		
37.2	897	At Limit		
38.0	916	Typical High Loading		
42.5	1020	Theoretical Max Loading (Liquidus Limited)		

Limiting Sludge Batch 5 to 33% waste loading to ensure fissile loading limits are not exceeded until further analysis justifies a higher loading

Projected Fissile Loading for Future Sludge Batches **

Sludge Batch	Source Tanks	WL% System Plan	Projected Cans System Plan	Canisters < 897 limit	WL no new Melter tech	Projected Canisters
1, 1A & 2			1826	1826		1826
SB3	7, 18		483	483		483
SB4	11	34	291	291		291
SB5 (LTAD)	5,6,11	34	379***	394	33	394
SB6	4,12	34	279	279	34	279
SB 7 *	4,12,7	34	363	363	34	363
SB8*	12,13, 4,7,8	38	334	334	38	334
SB9 *	11,14,15,13	50	261	261	38	343
SB10 *	13,15	50	252	252	38	332
SB11*	13, 32, 21, 22, 23	50	249	249	38	328
SB12	13, 32, 21, 22, 23	50	250	250	38	329
SB13 *	33,34,47,35,	50	252	252	38	331
SB14	33,34,47,35,	50	254	254	38	334
SB15*	33,34,47,39	50	241	326	37	326
SB16	33,34,47,43	50	186	229	38	245
SB17	33,34,47,43	50	207	382	27	382
Flush of Lines			180	180		180
Total Canisters			6287	6621		7099

^{*} Al Dissolution Required to mitigate # of cans

^{**} Preliminary Projections Only- not to be used for future plans

Next Six Months

897 g/m3 limit

- Preliminary analysis to allow continued Pu discards at approximately 70 kgs per sludge batch
- Continue analysis of future sludge batches with imposed fissile limit for glass
- Continue evaluation the life cycle effects for the limited waste loading

Pu Optimization Alternatives Analysis & NEPA Process

Await recommendations on bulk Pu disposition pathway

